login
A172224
Number of ways to place 6 nonattacking zebras on a 6 X n board.
1
1, 924, 8989, 37270, 145233, 525796, 1605490, 4136952, 9435413, 19632414, 37957424, 69050898, 119351315, 197524064, 314935542, 486171662, 729604121, 1068003424, 1529198580, 2146783422, 2960869583, 4018886128, 5376425842
OFFSET
1,2
COMMENTS
Zebra is a (fairy chess) leaper [2,3].
LINKS
FORMULA
a(n) = (1944n^6-27540n^5+227070n^4-1222555n^3+4366071n^2-9580580n+9925860)/30, n>=15.
For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - (k-1)(9k-20)/2/k!*(kn)^(k-1) + ...
G.f.: -x * (32*x^20 -48*x^19 -84*x^18 -1004*x^17 +3350*x^16 -802*x^15 +3364*x^14 -32132*x^13 +42540*x^12 +3538*x^11 +10674*x^10 -126767*x^9 +151663*x^8 -20769*x^7 -34421*x^6 +9539*x^5 +40807*x^4 -6284*x^3 +2542*x^2 +917*x +1) / (x-1)^7. - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[-(32 x^20 - 48 x^19 - 84 x^18 - 1004 x^17 + 3350 x^16 - 802 x^15 + 3364 x^14 - 32132 x^13 + 42540 x^12 + 3538 x^11 + 10674 x^10 - 126767 x^9 + 151663 x^8 - 20769 x^7 - 34421 x^6 + 9539 x^5 + 40807 x^4 - 6284 x^3 + 2542 x^2 + 917 x + 1) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
STATUS
approved