login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172131
Partial sums of floor(n^2/9) (A056838).
1
0, 0, 0, 1, 2, 4, 8, 13, 20, 29, 40, 53, 69, 87, 108, 133, 161, 193, 229, 269, 313, 362, 415, 473, 537, 606, 681, 762, 849, 942, 1042, 1148, 1261, 1382, 1510, 1646, 1790, 1942, 2102, 2271, 2448, 2634, 2830, 3035, 3250, 3475, 3710, 3955, 4211, 4477, 4754
OFFSET
0,5
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = Sum_{k=0..n} floor(k^2/9).
a(n) = round((2*n^3 + 3*n^2 - 15*n - 9)/54).
a(n) = round((2*n^3 + 3*n^2 - 15*n - 8)/54).
a(n) = floor((2*n^3 + 3*n^2 - 15*n + 18)/54).
a(n) = ceiling((2*n^3 + 3*n^2 - 15*n - 34)/54).
a(n) = a(n-9) + (n-4)^2 + 4, n > 8.
G.f.: x^3*(x+1)*(x^2 - x + 1)^2/((x-1)^4*(x^2 + x + 1)*(x^6 + x^3 + 1)). [Colin Barker, Oct 26 2012]
EXAMPLE
a(6) = 8 = 0 + 0 + 0 + 1 + 1 + 2 + 4.
MAPLE
a:= n-> round((2*n^3+3*n^2-15*n-9)/54): seq (a(n), n=0..50);
MATHEMATICA
Accumulate[Floor[Range[0, 50]^2/9]] (* or *) LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 1, 2, 4, 8, 13, 20, 29, 40, 53}, 60] (* Harvey P. Dale, Jan 10 2020 *)
PROG
(Magma) [Round((2*n^3+3*n^2-15*n-9)/54): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Cf. A056838.
Sequence in context: A084684 A011907 A056133 * A173721 A164482 A359850
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 19 2010
STATUS
approved