login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172129
Number of ways to place 5 nonattacking bishops on an n X n board.
13
0, 0, 0, 112, 3368, 39680, 282248, 1444928, 5865552, 20014112, 59673360, 159698416, 391202680, 890095584, 1902427800, 3853570560, 7450556064, 13829016768, 24759442464, 42930138864, 72328779720, 118747638592
OFFSET
1,4
COMMENTS
For any fixed value of k>1, a(n) = n^(2k) /k! - 2n^(2k - 1) /3/(k - 2)! + ...
LINKS
Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, 2016-2020.
Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1).
FORMULA
a(n) = n*(n-2)*(3*n^8 - 34*n^7 + 177*n^6 - 590*n^5 + 1435*n^4 - 2592*n^3 + 3326*n^2 - 2844*n + 1344)/360 if n is even.
a(n) = (n-1)*(n-2)*(n-3)*(3*n^7 - 22*n^6 + 80*n^5 - 204*n^4 + 379*n^3 - 464*n^2 + 378*n - 270)/360 if n is odd.
G.f.: 8*x^4*(14 + 337*x + 2574*x^2 + 9871*x^3 + 22040*x^4 + 31334*x^5 + 28808*x^6 + 17522*x^7 + 6666*x^8 + 1593*x^9 + 186*x^10 + 15*x^11) / ((1-x)^11*(1+x)^5). - Vaclav Kotesovec, Mar 25 2010
a(n) = (1/360)*(n-2)*( n*(1344 -2844*n +3326*n^2 -2592*n^3 +1435*n^4 -590*n^5 +177*n^6 -34*n^7 +3*n^8) -15*(54 -58*n +22*n^2 -3*n^3)*(1-(-1)^n)/2 ). - G. C. Greubel, Apr 17 2022
MATHEMATICA
CoefficientList[Series[8*x^4*(14 +337*x +2574*x^2 +9871*x^3 +22040*x^4 +31334*x^5 +28808*x^6 +17522*x^7 +6666*x^8 +1593*x^9 +186*x^10 +15*x^11)/((1-x)^11*(1+x)^5), {x, 0, 50}], x]] (* Vincenzo Librandi, May 02 2013 *)
PROG
(SageMath) [(1/360)*(n-2)*( n*(1344 -2844*n +3326*n^2 -2592*n^3 +1435*n^4 -590*n^5 +177*n^6 -34*n^7 +3*n^8) -15*(54 -58*n +22*n^2 -3*n^3)*(n%2) ) for n in (1..50)] # G. C. Greubel, Apr 17 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 26 2010
STATUS
approved