login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172046 Partial sums of floor(n^2/7) (A056834). 1
0, 0, 0, 1, 3, 6, 11, 18, 27, 38, 52, 69, 89, 113, 141, 173, 209, 250, 296, 347, 404, 467, 536, 611, 693, 782, 878, 982, 1094, 1214, 1342, 1479, 1625, 1780, 1945, 2120, 2305, 2500, 2706, 2923, 3151, 3391, 3643, 3907, 4183, 4472, 4774, 5089, 5418, 5761, 6118 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,1,-3,3,-1).

FORMULA

a(n) = Sum_{k=0..n} floor(k^2/7).

a(n) = round((2*n^3 + 3*n^2 - 11*n)/42).

a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/42).

a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/42).

a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/42).

a(n) = a(n-7) + (n-2)*(n-4) + 3, n > 6.

G.f.: x^3*(x+1)*(x^2 - x + 1)/((x-1)^4*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). [Colin Barker, Oct 26 2012]

EXAMPLE

a(5) = 6 = 0 + 0 + 0 + 1 + 2 + 3.

MAPLE

a:= n-> round((2*n^3+3*n^2-11*n)/42): seq (a(n), n=0..50);

MATHEMATICA

LinearRecurrence[{3, -3, 1, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 1, 3, 6, 11, 18, 27, 38}, 60] (* Harvey P. Dale, Apr 12 2017 *)

PROG

(MAGMA) [Round((2*n^3+3*n^2-11*n)/42): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011

CROSSREFS

Cf. A056834.

Sequence in context: A224214 A010000 A183199 * A014125 A147456 A230088

Adjacent sequences:  A172043 A172044 A172045 * A172047 A172048 A172049

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Nov 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:28 EDT 2019. Contains 324194 sequences. (Running on oeis4.)