login
Partial sums of floor(n^2/7) (A056834).
1

%I #33 Sep 08 2022 08:45:50

%S 0,0,0,1,3,6,11,18,27,38,52,69,89,113,141,173,209,250,296,347,404,467,

%T 536,611,693,782,878,982,1094,1214,1342,1479,1625,1780,1945,2120,2305,

%U 2500,2706,2923,3151,3391,3643,3907,4183,4472,4774,5089,5418,5761,6118

%N Partial sums of floor(n^2/7) (A056834).

%H Vincenzo Librandi, <a href="/A172046/b172046.txt">Table of n, a(n) for n = 0..10000</a>

%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,1,-3,3,-1).

%F a(n) = Sum_{k=0..n} floor(k^2/7).

%F a(n) = round((2*n^3 + 3*n^2 - 11*n)/42).

%F a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/42).

%F a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/42).

%F a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/42).

%F a(n) = a(n-7) + (n-2)*(n-4) + 3, n > 6.

%F G.f.: x^3*(x+1)*(x^2 - x + 1)/((x-1)^4*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). [_Colin Barker_, Oct 26 2012]

%e a(5) = 6 = 0 + 0 + 0 + 1 + 2 + 3.

%p a:= n-> round((2*n^3+3*n^2-11*n)/42): seq (a(n), n=0..50);

%t LinearRecurrence[{3,-3,1,0,0,0,1,-3,3,-1},{0,0,0,1,3,6,11,18,27,38},60] (* _Harvey P. Dale_, Apr 12 2017 *)

%o (Magma) [Round((2*n^3+3*n^2-11*n)/42): n in [0..60]]; // _Vincenzo Librandi_, Jun 25 2011

%Y Cf. A056834.

%K nonn,easy

%O 0,5

%A _Mircea Merca_, Nov 19 2010