login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171154
Smallest prime whose decimal expansion begins with concatenation of first n primes in descending order.
6
2, 3203, 5323, 75323, 11753221, 131175329, 171311753203, 19171311753229, 231917131175321, 292319171311753231, 3129231917131175327, 3731292319171311753239, 41373129231917131175321, 43413731292319171311753233, 4743413731292319171311753269, 534743413731292319171311753223
OFFSET
1,1
COMMENTS
Sequence is conjectured to be infinite.
a(n) = "prime(n)...prime(1) R(n)".
R(n) for n>1: 03, 3, 3, 21, 9, 03, 29, 1, 31, 7, 39, 1, 33, 69, 23, 3, 59, 27, ...
It is conjectured that R(n)=1 for infinite many n.
REFERENCES
Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..298
EXAMPLE
a(1) = 2 = prime(1) is the exceptional case, because no R(1).
a(2) = 3203 = prime(453) = "32 03", R(2)="03".
a(5) = 11753221 = prime(772902) = "prime(5)...prime(1) 21", R(5)=21.
PROG
(Python)
from sympy import isprime, primerange, prime
def a(n):
if n == 1: return 2
c = int("".join(map(str, [p for p in primerange(2, prime(n)+1)][::-1])))
pow10 = 10
while True:
c *= 10
for b in range(1, pow10, 2):
if b%5 == 0: continue
if isprime(c+b):
return c+b
pow10 *= 10
print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Mar 12 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Dec 04 2009
EXTENSIONS
a(14) and beyond from Michael S. Branicky, Mar 12 2022
STATUS
approved