login
A094211
a(n) = Sum_{k=0..n} binomial(7*n,7*k).
9
1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, 79450506979090, 10353832741654602, 1313930226050847938, 168883831255263816554, 21573903987107973878962, 2764126124873404346104778, 353643666623193292098680930, 45276535087893983968685884906
OFFSET
0,2
LINKS
FORMULA
Let b(n) = a(n) - 2^(7n)/7; then b(n) + 57*b(n-1) - 289*b(n-2) - b(n-3) = 0.
a(n) = 71*a(n-1) + 7585*a(n-2) - 36991*a(n-3) - 128*a(n-4); a(0)=1, a(1)=2, a(2)=3434, a(3)=232562. - Harvey P. Dale, May 06 2012
G.f.: (1 - 69*x - 4293*x^2 + 10569*x^3) / ((1 - 128*x)*(1 + 57*x - 289*x^2 - x^3)). - Colin Barker, May 27 2019
a(n) = (1 + 2*(s*(3 - 4*s^2))^(7*n) + 2*(-1)^n*((1 - 2*s^2)^(7*n) + s^(7*n))) * 2^(7*n)/7, where s = sin(Pi/14). - Vaclav Kotesovec, Apr 17 2023
MAPLE
A094211:=n->add(binomial(7*n, 7*k), k=0..n): seq(A094211(n), n=0..20); # Wesley Ivan Hurt, Feb 16 2017
MATHEMATICA
Table[Sum[Binomial[7n, 7k], {k, 0, n}], {n, 0, 20}] (* or *) LinearRecurrence[ {71, 7585, -36991, -128}, {1, 2, 3434, 232562}, 20] (* Harvey P. Dale, May 06 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(7*n, 7*k))
CROSSREFS
Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), this sequence (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).
Sequence in context: A171154 A099689 A065671 * A372116 A350418 A114573
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, May 27 2004
STATUS
approved