login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170818 a(n) = product of primes (with multiplicity) of form 4k+1 that divide n. 6
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 25, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 25, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 25, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Completely multiplicative with a(p) = p if p = 4k+1 and a(p) = 1 otherwise. - Tom Edgar, Mar 05 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

A. Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340.

Index to divisibility sequences

FORMULA

a(n) = n/A072438(n). - Michel Marcus, Mar 05 2015

MAPLE

a:= n-> mul(`if`(irem(i[1], 4)=1, i[1]^i[2], 1), i=ifactors(n)[2]):

seq(a(n), n=1..100);  # Alois P. Heinz, Jun 09 2014

PROG

(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015

(Python)

from sympy import factorint

from operator import mul

def a072438(n):

    f = factorint(n)

    return 1 if n == 1 else reduce(mul, [1 if i%4==1 else i**f[i] for i in f])

def a(n): return n/a072438(n) # Indranil Ghosh, May 08 2017

CROSSREFS

Cf. A170817-A170819, A097706, A083025, A072438, A286361.

Sequence in context: A060904 A135469 A170817 * A046622 A170825 A140214

Adjacent sequences:  A170815 A170816 A170817 * A170819 A170820 A170821

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Dec 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.