The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170818 a(n) is the product of primes (with multiplicity) of form 4*k+1 that divide n. 7
 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 25, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 25, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 25, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Completely multiplicative with a(p) = p if p = 4k+1 and a(p) = 1 otherwise. - Tom Edgar, Mar 05 2015 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 A. Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340. FORMULA a(n) = n/A072438(n). - Michel Marcus, Mar 05 2015 MAPLE a:= n-> mul(`if`(irem(i[1], 4)=1, i[1]^i[2], 1), i=ifactors(n)[2]): seq(a(n), n=1..100);  # Alois P. Heinz, Jun 09 2014 MATHEMATICA a[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 1, p^e, 1], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, May 29 2019 *) PROG (PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015 (Python) from sympy import factorint, prod def a072438(n):     f = factorint(n)     return 1 if n == 1 else prod(i**f[i] for i in f if i % 4 != 1) def a(n): return n//a072438(n) # Indranil Ghosh, May 08 2017 CROSSREFS Cf. A170817-A170819, A097706, A083025, A072438, A286361. Sequence in context: A060904 A135469 A170817 * A046622 A170825 A140214 Adjacent sequences:  A170815 A170816 A170817 * A170819 A170820 A170821 KEYWORD nonn,mult AUTHOR N. J. A. Sloane, Dec 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)