This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286361 Least number with the same prime signature as {the largest divisor of n with only prime factors of the form 4k+1} has: a(n) = A046523(A170818(n)). 8
 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 6, 1, 1, 2, 1, 2, 1, 1, 2, 2, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 6, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A046523(A170818(n)). a(n) = A286363(A267099(n)). PROG (Scheme) (define (A286361 n) (A046523 (A170818 n))) (Python) from sympy import factorint from operator import mul def P(n):     f = factorint(n)     return sorted([f[i] for i in f]) def a046523(n):     x=1     while True:         if P(n) == P(x): return x         else: x+=1 def a072438(n):     f = factorint(n)     return 1 if n == 1 else reduce(mul, [1 if i%4==1 else i**f[i] for i in f]) def a(n): return a046523(n/a072438(n)) # Indranil Ghosh, May 09 2017 CROSSREFS Cf. A046523, A170818, A267099, A267113, A286363, A286364, A286365. Differs from A063014 for the first time at n=25, where a(25) = 4, while A063014(25) = 3. Sequence in context: A300410 A293451 A063014 * A097295 A220572 A083896 Adjacent sequences:  A286358 A286359 A286360 * A286362 A286363 A286364 KEYWORD nonn AUTHOR Antti Karttunen, May 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 10:24 EST 2018. Contains 317234 sequences. (Running on oeis4.)