|
|
A168570
|
|
Exponent of 3 in 2^n - 1.
|
|
2
|
|
|
0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
COMMENTS
|
Records: a(A025192(n)) = n and a(k) < n for k < A025192(n). [Joerg Arndt, Apr 07 2014]
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
For n=6, 2^6 - 1 = 63. Greatest divisor of 63 which is a power of 3 is 9 (3^2).
|
|
MAPLE
|
a:= n-> padic[ordp](2^n-1, 3):
seq(a(n), n=1..120); # Alois P. Heinz, Mar 27 2017
|
|
MATHEMATICA
|
Table[IntegerExponent[2^n - 1, 3], {n, 100}] (* T. D. Noe, Apr 13 2014 *)
|
|
PROG
|
(PARI) vector(100, n, valuation(2^n-1, 3)) /* Joerg Arndt, Jun 13 2011 */
|
|
CROSSREFS
|
Cf. A051064 (without the zeros).
Sequence in context: A248908 A133565 A239704 * A340928 A355742 A267860
Adjacent sequences: A168567 A168568 A168569 * A168571 A168572 A168573
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Martins Opmanis, Nov 30 2009
|
|
STATUS
|
approved
|
|
|
|