This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133565 a(1)=1. a(n+1) = sum{k=non-isolated divisors of n} a(k). A non-isolated divisor, k, of n is a positive divisor of n where (k-1) or (k+1) divides n. 3
 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS a(2n) = 0 since 2n-1 has no non-isolated divisors. - Ray Chandler LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000 EXAMPLE The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are adjacent and 4 and 5 are adjacent. So the non-isolated divisors of 20 are 1,2, 4,5. Therefore a(21) = a(1) + a(2) + a(4) + a(5) = 1 + 0 + 0 + 1 = 2. PROG (PARI) A133565(n) = if(1==n, n, sumdiv(n-1, d, if((!((n-1)%(1+d))) || ((d>1)&&(!((n-1)%(d-1)))), A133565(d), 0))); \\ Antti Karttunen, Dec 19 2018 CROSSREFS Cf. A132748, A133564. Sequence in context: A276084 A230403 A248908 * A239704 A168570 A267860 Adjacent sequences:  A133562 A133563 A133564 * A133566 A133567 A133568 KEYWORD nonn AUTHOR Leroy Quet, Sep 16 2007 EXTENSIONS Extended by Ray Chandler, Jun 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)