login
A168163
Sophie Germain primes p such that the concatenation of p and 2p+1 is again prime.
2
3, 11, 23, 113, 173, 281, 359, 431, 491, 509, 719, 1103, 1229, 1559, 1889, 1931, 2039, 2393, 2459, 3413, 3539, 3761, 3911, 4391, 4793, 5303, 6113, 6263, 6329, 6491, 6563, 7643, 7823, 7883, 8069, 8093, 8951, 9221, 9473, 10061, 10091, 10589, 10781, 11369
OFFSET
1,1
COMMENTS
A subsequence of A005384 (Sophie Germain primes: 2p+1 is prime) and of A168164 (which does not require 2p+1 to be prime).
The primes concat(p,2p+1) are listed in A168165.
LINKS
MATHEMATICA
sgp2Q[p_]:=Module[{s=2p+1}, AllTrue[{s, p 10^IntegerLength[s]+s}, PrimeQ]]; Select[ Prime[ Range[ 1500]], sgp2Q] (* Harvey P. Dale, Jul 11 2023 *)
PROG
(PARI) forprime(p=1, 19999, isprime(2*p+1) & isprime(eval(Str(p, 2*p+1))) & print1(p", "))
CROSSREFS
Sequence in context: A002515 A096297 A081857 * A120088 A081737 A005475
KEYWORD
base,nonn
AUTHOR
M. F. Hasler, Nov 25 2009
STATUS
approved