This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime. (Formerly M2884 N2039) 34
 3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 2*p+1 divides M(p), i.e. A000225(p), the p-th Mersenne number. - Lekraj Beedassy, Jun 23 2003 Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - Arkadiusz Wesolowski, May 26 2011 REFERENCES A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564. L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27. Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 MATHEMATICA Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ] Select[Prime[Range[500]], Mod[#, 4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *) PROG (PARI) is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013 (MAGMA) [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016 CROSSREFS Sequence in context: A032026 A282198 A158034 * A096297 A081857 A168163 Adjacent sequences:  A002512 A002513 A002514 * A002516 A002517 A002518 KEYWORD nonn AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Mar 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 23:42 EST 2019. Contains 319184 sequences. (Running on oeis4.)