login
A167603
Expansion of 1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4).
3
1, -837, 422809, -205297469, 116802170481, -69673476119413, 39794491851872649, -22150911964734611693, 12419834337117692910305, -7037064660459418136012197, 3987785838055462331085793401, -2252091398491521818356890138525, 1270709613993089447039294803101777
OFFSET
0,2
COMMENTS
Ratio limit is 496*-1.1388396294897187...;
the beta integer like rational pseudo-Pisot root.
This beta integer root is smaller than the lowest Salem number.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-837, -277760, -83891456, -7809531904).
FORMULA
a(n+4) + 837*a(n+3) + 277760*a(n+2) + 83891456*a(n+1) + 7809531904*a(n) = 0. - G. C. Greubel, Jun 17 2016
MATHEMATICA
LinearRecurrence[{-837, -277760, -83891456, -7809531904}, {1, -837, 422809, -205297469}, 50] (* G. C. Greubel, Jun 17 2016 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4))); // G. C. Greubel, Nov 03 2018
CROSSREFS
Sequence in context: A322524 A016113 A177846 * A284187 A202716 A118380
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Nov 06 2009
EXTENSIONS
New name by Franck Maminirina Ramaharo, Nov 02 2018
STATUS
approved