login
A143478
Expansion of 1/(x^10*p(1/x)), where p(x) = x^11 + x^10 - 11*x^9 - 11*x^8 + 42*x^7 + 40*x^6 - 66*x^5 - 54*x^4 + 42*x^3 + 24*x^2 - 8*x - 1 is a Salem polynomial.
3
0, 1, -1, 12, -12, 91, -89, 560, -526, 3061, -2715, 15526, -12779, 74893, -56092, 348808, -232184, 1584273, -909357, 7065982, -3354913, 31100725, -11473678, 135587365, -34883109, 587116592, -82703752, 2530527727, -52581912, 10874166572, 1107267567, 46648306254
OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,11,11,-42,-40,66,54,-42,-24,8,1).
FORMULA
G.f.: x/(1 + x - 11*x^2 - 11*x^3 + 42*x^4 + 40*x^5 - 66*x^6 - 54*x^7 + 42*x^8 + 24*x^9 - 8*x^10 - x^11).
a(n) = -a(n-1) + 11*a(n-2) + 11*a(n-3) - 42*a(n-4) - 40*a(n-5) + 66*a(n-6) + 54*a(n-7) - 42*a(n-8) - 24*a(n-9) + 8*a(n-10) + a(n-11). - Franck Maminirina Ramaharo, Nov 02 2018
MATHEMATICA
CoefficientList[Series[x/(1 + x - 11*x^2 - 11*x^3 + 42*x^4 + 40*x^5 - 66*x^6 - 54*x^7 + 42*x^8 + 24*x^9 - 8*x^10 - x^11), {x, 0, 30}], x]
PROG
(PARI) x='x+O('x^50); concat([0], Vec(x/(1+x-11*x^2-11*x^3+42*x^4+40*x^5 -66*x^6-54*x^7+42*x^8+24*x^9-8*x^10-x^11))) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x/(1+x-11*x^2-11*x^3+42*x^4+40*x^5-66*x^6-54*x^7+42*x^8 +24*x^9-8*x^10-x^11))); // G. C. Greubel, Nov 03 2018
CROSSREFS
Sequence in context: A328531 A111306 A151777 * A219400 A219448 A067123
KEYWORD
easy,sign
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Nov 02 2018
STATUS
approved