login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143475 Numerator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109. 10
1, 1, -1433, 1550887, -365236274341, 31170363588856607, -2626723351027654662151, 127061942835077684151157039, -5696145248370283185291966600124423, 254326794362835881966596504823903633657, -33203124408022060010631772664020406983485604379 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
LINKS
Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Hyperfactorial
FORMULA
From Seiichi Manyama, Aug 31 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the numerator of c_n. (End)
EXAMPLE
(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4).
From Seiichi Manyama, Aug 31 2018: (Start)
c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 1.
c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = -1433. (End)
CROSSREFS
Sequence in context: A205070 A169822 A114083 * A245948 A221004 A204862
KEYWORD
sign,frac
AUTHOR
Eric W. Weisstein, Aug 19 2008
EXTENSIONS
More terms from Seiichi Manyama, Aug 31 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 14:10 EDT 2024. Contains 371792 sequences. (Running on oeis4.)