login
A167602
Expansion of 1/(1+14*x+72*x^2+384*x^3+512*x^4).
4
1, -14, 124, -1112, 11504, -121440, 1235392, -12400000, 125394688, -1274938880, 12949806080, -131304445952, 1331250655232, -13503545892864, 136990201856000, -1389579896979456, 14094585311461376
OFFSET
0,2
COMMENTS
The limit of a(n+1)/a(n) tends to 8*(-1.2679237217317025...).
FORMULA
a(n+4) + 14*a(n+3) + 72*a(n+2) + 384*a(n+1) + 512*a(n) = 0. - G. C. Greubel, Jun 17 2016
MATHEMATICA
Clear[p, q, x, t, n];
p[z_]:= 1 + 6 *z + 9 *z^2 + 14* z^3 + 8 *z^4;
q[x_]:= 1/Expand[x^4*p[1/x]];
a = Table[8^(n + 1)*SeriesCoefficient[ Series[q[t], {t, 0, 60}], n], {n, 0, 60}]
LinearRecurrence[{-14, -72, -384, -512}, {1, -14, 124, -1112}, 100] (* G. C. Greubel, Jun 17 2016 *)
PROG
(PARI) Vec(1/(1+14*x+72*x^2+384*x^3+512*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A188411 A125377 A147590 * A212234 A155637 A126535
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Nov 06 2009
EXTENSIONS
Definition rephrased. - R. J. Mathar, Jul 02 2012
STATUS
approved