login
A165961
Number of circular permutations of length n without 3-sequences.
15
1, 5, 20, 102, 627, 4461, 36155, 328849, 3317272, 36757822, 443846693, 5800991345, 81593004021, 1228906816941, 19733699436636, 336554404751966, 6075478765948135, 115734570482611885, 2320148441078578447, 48827637296350480457, 1076313671861962141616
OFFSET
3,2
COMMENTS
Circular permutations are permutations whose indices are from the ring of integers modulo n. 3-sequences are of the form i,i+1,i+2. Sequence gives number of permutations of [n] starting with 1 and having no 3-sequences.
a(n) is also the number of permutations of length n-1 without consecutive fixed points (cf. A180187). - David Scambler, Mar 27 2011
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012 [broken link]
LINKS
Wayne M. Dymacek and Isaac Lambert, Permutations Avoiding Runs of i, i+1, i+2 or i, i-1, i-2, Journal of Integer Sequences, Vol. 14 (2011), Article 11.1.6.
Kyle Parsons, Arithmetic progressions in permutations, Thesis, 2011.
FORMULA
Let b(n) be the sequence A002628. Then for n > 5, this sequence satisfies a(n) = b(n-1) - b(n-3) + a(n-3).
a(n) = Sum_{k=0..n/2} binomial(n-k,k)*d(n-k-1), where d(j)=A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 07 2010
EXAMPLE
For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
MAPLE
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k, k)*d[n-k-1], k = 0 .. floor((1/2)*n)) end proc: seq(a(n), n = 3 .. 23); # Emeric Deutsch, Sep 07 2010
MATHEMATICA
a[n_] := Sum[Binomial[n-k, k] Subfactorial[n-k-1], {k, 0, n/2}];
a /@ Range[3, 21] (* Jean-François Alcover, Oct 29 2019 *)
CROSSREFS
Cf. A000166, A180186, - Emeric Deutsch, Sep 07 2010
A column of A216718. - N. J. A. Sloane, Sep 15 2012
Sequence in context: A110595 A369488 A092640 * A276314 A292358 A259275
KEYWORD
nonn
AUTHOR
Isaac Lambert, Oct 01 2009
EXTENSIONS
More terms from Emeric Deutsch, Sep 07 2010
Edited by N. J. A. Sloane, Apr 04 2011
STATUS
approved