login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259275 G.f.: A(x) = exp( Sum_{n>=1} 5^n * x^n/(n*(1+x^n)) ). 4
1, 5, 20, 105, 520, 2580, 12945, 64680, 323320, 1616780, 8083745, 40418380, 202092620, 1010462480, 5052310420, 25261556205, 126307777920, 631538879180, 3157694416720, 15788472066780, 78942360284720, 394711801527505, 1973559007551520, 9867795037511480, 49338975188073020 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).

LINKS

Table of n, a(n) for n=0..24.

FORMULA

G.f.: -1/4 + (5/4)/(1+x - 5*x/(1+x^2 - 5*x^2/(1+x^3 - 5*x^3/(1+x^4 - 5*x^4/(1+x^5 - 5*x^5/(1+x^6 - 5*x^6/(1+x^7 - 5*x^7/(1+x^8 - 5*x^8/(...))))))))), a continued fraction.

G.f.: A(x) = (1 + x*B(x))/(1 - 4*x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - 4*x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - 4*x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - 4*x^4*E(x)), ...

EXAMPLE

G.f.: A(x) = 1 + 5*x + 20*x^2 + 105*x^3 + 520*x^4 + 2580*x^5 +...

such that

log(A(x)) = 5*x/(1+x) + 5^2*x^2/(2*(1+x^2)) + 5^3*x^3/(3*(1+x^3)) + 5^4*x^4/(4*(1+x^4)) + 5^5*x^5/(5*(1+x^5)) +...

PROG

(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 5^m*x^m/(1+x^m+x*O(x^n))/m)), n))}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x^(n+1-i)*A)/(1 - 4*x^(n+1-i)*A+ x*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A165941, A259273, A259274, A259276.

Sequence in context: A165961 A276314 A292358 * A109500 A137961 A334716

Adjacent sequences:  A259272 A259273 A259274 * A259276 A259277 A259278

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 06:16 EDT 2020. Contains 337177 sequences. (Running on oeis4.)