login
A165962
Number of circular permutations of length n without modular 3-sequences
15
1, 5, 18, 95, 600, 4307, 35168, 321609, 3257109, 36199762, 438126986, 5736774126, 80808984725, 1218563180295, 19587031966352, 334329804347219, 6039535339644630, 115118210694558105, 2308967760171049528, 48613722701436777455, 1072008447320752890459
OFFSET
3,2
COMMENTS
Circular permutations are permutations whose indices are from the ring of integers modulo n. Modular 3-sequences are of the following form: i,i+1,i+2, where arithmetic is modulo n.
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - N. J. A. Sloane, Sep 15 2012
LINKS
FORMULA
This sequence can be related to A165961 by the use of auxiliary sequences (and the auxiliary sequences can themselves be calculated by recurrence relations).
EXAMPLE
For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
MATHEMATICA
f[i_, n_, k_]:=If[i==0&&k==0, 1, If[i==n&&n==k, 1, Binomial[k-1, k-i]*Binomial[n-k-1, k-i-1]+2*Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i-1]+Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i]]];
w1[i_, n_, k_]:=If[n-2k+i<0, 0, If[n-2k+i==0, 1, (n-2k+i-1)!]];
a[n_, k_]:=Sum[f[i, n, k]*w1[i, n, k], {i, 0, k}];
A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n, k], {k, 1, n}];
Table[A165962[n], {n, 3, 23}] (* David Scambler, Sep 18 2012 *)
CROSSREFS
First column of A216722. Cf. A216723. - N. J. A. Sloane, Sep 15 2012
Sequence in context: A113023 A174082 A188329 * A127756 A228614 A158455
KEYWORD
nonn
AUTHOR
Isaac Lambert, Oct 01 2009
STATUS
approved