login
A165794
Nimsum of pairs of consecutive Lucas numbers.
1
3, 2, 7, 3, 12, 25, 15, 50, 99, 55, 188, 389, 843, 322, 1567, 3531, 1388, 7009, 12823, 8082, 25739, 50479, 24828, 94029, 203347, 436994, 169975, 812115, 1793132, 911369, 3247295, 6798738, 3281747, 12244295, 33047100, 13090261, 46475931
OFFSET
0,1
FORMULA
a(n) = A003987(Lucas(n), Lucas(n+1)). - Michel Marcus, Apr 30 2019
EXAMPLE
For n = 3, Lucas numbers are 4 and then 7. 0100 XOR 0111 = 0011 (3 in decimal).
MAPLE
read("transforms") ; A000032 := proc(n) option remember; if n <= 1 then op(n+1, [2, 1]) ; else procname(n-1)+procname(n-2) ; fi; end: A165794 := proc(n) nimsum(A000032(n), A000032(n+1)) ; end: seq(A165794(n), n=0..80) ; # R. J. Mathar, Sep 28 2009
PROG
(Python)
a = 2
b = 1
while b < 2000:
c = a^b
print(c)
a, b = b, a+b
CROSSREFS
Nimsum of consecutive pairs in A000032.
Cf. A003987.
Sequence in context: A295422 A241838 A241559 * A075270 A067872 A318457
KEYWORD
nonn
AUTHOR
Mick Purcell (mickpurcell(AT)gmail.com), Sep 26 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 28 2009
STATUS
approved