OFFSET
1,1
COMMENTS
Integers of the form k + k*(k+1)/10 = k + A000217(k)/5. For k see A047208, for A000217(k)/5 see A057569. - R. J. Mathar, Sep 25 2009
Are all terms composite numbers?
Yes. They are alternately of the form (h+2)*(5*h-1)/2 and h*(5*h+11)/2, with h>0. - Bruno Berselli, Dec 22 2016
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 5*(2*n^2 + 10*n + 3)/16 - 3*(-1)^n*(5 + 2*n)/16.
G.f.: x*(-6 - 2*x + 2*x^2 + x^3) / ((1 + x)^2*(x - 1)^3). (End)
Sum_{n>=1} 1/a(n) = 514/363 - 2*Pi*sqrt(1+2/sqrt(5))/11. - Amiram Eldar, Jul 26 2024
MATHEMATICA
Select[k = Range[0, 130]; k (k + 11)/10, IntegerQ] (* Bruno Berselli, Dec 22 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Sep 24 2009
EXTENSIONS
Definition simplified by R. J. Mathar, Sep 25 2009
Corrected A-number in my comment - R. J. Mathar, Oct 30 2009
STATUS
approved