OFFSET
1,1
COMMENTS
Integers of the form k + k*(k+1)/6 = k + A000217(k)/3; for k see A007494, for A000217(k)/3 see A001318. - R. J. Mathar, Sep 25 2009
Only 3 terms are prime numbers (3,5,13). Are all the rest composite?
The only prime terms in this sequence are 3, 5, and 13. If k=6j+1 or k=6j+4, k*(k+7) is congruent to 2 mod 6 and will never be an integer. If k=6j, k*(k+7)/6 = j*(6j+7) which is prime only for j=1 (i.e., 13 is in the sequence). If k=6j+2, k*(k+7)/6 = (3j+1)*(2j+3) which is prime only for j=0 (i.e., 3 is in the sequence). If k=6j+3, k*(k+7)/6 = (2j+1)*(3j+5) which is prime only for j=0 (i.e., 5 is in the sequence). If k=6j+5, k*(k+7)/6 = (6j+5)*(j+2) which is never prime. Thus {3,5,13} are the only primes in this sequence. - Derek Orr, Feb 26 2017
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(-3-2*x+x^2+x^3)/((1+x)^2 * (x-1)^3). (End)
a(n) = Sum_{i=1..n} numerator(i/2) + denominator(i/2). - Wesley Ivan Hurt, Feb 26 2017
From Colin Barker, Feb 26 2017: (Start)
a(n) = (3*n^2 + 14*n) / 8 for n even.
a(n) = (3*n^2 + 16*n + 5) / 8 for n odd. (End)
From Peter Bala, Dec 15 2020: (Start)
a(n) = A001318(n+2) - 2.
Exponents in the expansion of Sum_{n >= 0} x^n * Product_{k = 1..n+1} (1 - x^k) = 1 - x^3 - x^5 + x^10 + x^13 - x^20 - x^24 + + - - .... (End)
Sum_{n>=1} 1/a(n) = 159/98 - 2*Pi/(7*sqrt(3)). - Amiram Eldar, Jul 26 2024
EXAMPLE
For k=1, 2, 3, ..., k*(k+7)/6 is 4/3, 3, 5, 22/3, 10, 13, 49/3, 20, 24, 85/3, 33, ..., and the integer values out of these become the sequence.
MATHEMATICA
q=3; s=0; lst={}; Do[s+=((n+q)/q); If[IntegerQ[s], AppendTo[lst, s]], {n, 6!}]; lst
PROG
(PARI) Vec(x*(-3-2*x+x^2+x^3) / ((1+x)^2*(x-1)^3) + O(x^60)) \\ Colin Barker, Feb 26 2017
(PARI) a(n)=if(n%2, 3*n^2 + 16*n + 5, 3*n^2 + 14*n)/8 \\ Charles R Greathouse IV, Feb 27 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Sep 24 2009
EXTENSIONS
Definition simplified by R. J. Mathar, Sep 25 2009
STATUS
approved