login
A163541
The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.
4
1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 3, 3, 2, 1, 2, 2, 3, 0, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1
OFFSET
1,3
COMMENTS
Taking every sixteenth term gives the same sequence: (and similarly for all higher powers of 16 as well): a(n) = a(16*n).
LINKS
FORMULA
a(n) = A010873(A163538(n) + A163539(n) + abs(A163538(n)) + 3).
MATHEMATICA
HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] := Part[Flatten[a[(n + 16 - #)/16/.HC/.HC], #]) &, Range[16]];
Part[FoldList[Mod[Plus[#1, #2], 4] &, 0, a[#] & /@ Range[4^4]/.{F[n_]:>0, L[n_]:>1, R[n_]:>-1}], 2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
PROG
(Scheme:) (define (A163541 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163538 n))) 4))
CROSSREFS
a(n) = A163541(A008598(n)) = A004442(A163540(n)). See also A163543.
Sequence in context: A133574 A133573 A151859 * A280815 A165974 A090622
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 01 2009
STATUS
approved