login
A163425
Primes p such that (p-1)^3/8+(p+1)^2/4 is also prime.
7
3, 5, 7, 17, 19, 29, 31, 47, 61, 71, 79, 101, 131, 167, 181, 197, 199, 227, 251, 269, 281, 307, 359, 397, 421, 449, 461, 467, 509, 569, 659, 691, 709, 811, 859, 919, 937, 997, 1031, 1087, 1151, 1217, 1231, 1249, 1277, 1279, 1301, 1307, 1361, 1409, 1447, 1451
OFFSET
1,1
COMMENTS
The associated (p-1)^3/8+(p+1)^2/4 are in A163424.
LINKS
EXAMPLE
p=3 is in the sequence because (3-1)^3/8+(3+1)^2/4=1+4=5 is also prime.
p=5 is in the sequence because (5-1)^3/8+(5+1)^2/4=17 is also prime.
MATHEMATICA
f[n_]:=((p-1)/2)^3+((p+1)/2)^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[1500]], PrimeQ[(# - 1)^3 / 8 + (# + 1)^2 / 4]&] (* Vincenzo Librandi, Apr 08 2013 *)
PROG
(Magma) [p: p in PrimesInInterval(3, 2000) | IsPrime((p-1)^3 div 8 + (p+1)^2 div 4)]; // Vincenzo Librandi, Apr 08 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Comment turned into examples by R. J. Mathar, Sep 02 2009
STATUS
approved