The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163424 Primes of the form (p-1)^3/8 + (p+1)^2/4 where p is prime. 8
 5, 17, 43, 593, 829, 2969, 3631, 12743, 27961, 44171, 60919, 127601, 278981, 578843, 737281, 950993, 980299, 1455893, 1969001, 2424329, 2763881, 3605293, 5767739, 7801993, 9305521, 11290049, 12220361, 12704093, 16452089, 22987529, 35720189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1100 EXAMPLE (3-1)^3/8 + (3+1)^2/4 = 1 + 4 = 5; (5-1)^3/8 + (5+1)^2/4 = 8 + 9 = 17; (7-1)^3/8 + (7+1)^2/4 = 27 + 16 = 43. MATHEMATICA f[n_]:=((p-1)/2)^3+((p+1)/2)^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, f[p]]], {n, 7!}]; lst Select[(#-1)^3/8+(#+1)^2/4&/@Prime[Range[150]], PrimeQ] (* Harvey P. Dale, Oct 05 2018 *) PROG (PARI) list(lim)=my(v=List(), t); forprime(p=3, , t=((p-1)/2)^3 + ((p+1)/2)^2; if(t>lim, break); if(isprime(t), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Dec 23 2016 CROSSREFS Subsequence of A100662. For the corresponding primes p, see A163425. Cf. A162652, A163418, A163419, A163420, A163421, A163422. Sequence in context: A146778 A146858 A146183 * A294102 A190969 A099451 Adjacent sequences: A163421 A163422 A163423 * A163425 A163426 A163427 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Jul 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)