login
A163422
Primes p such that A071568((p-1)/2) is also prime.
8
3, 5, 7, 11, 13, 17, 19, 31, 37, 43, 59, 61, 79, 83, 89, 97, 107, 109, 113, 139, 149, 167, 191, 233, 241, 263, 271, 293, 307, 311, 337, 359, 373, 383, 439, 443, 479, 487, 491, 523, 557, 617, 641, 647, 659, 673, 683, 701, 733, 757, 811, 829, 853, 857, 859, 877
OFFSET
1,1
COMMENTS
Primes p such that (p-1)^3/8+(p+1)/2 is also prime, i.e., in A095692.
LINKS
EXAMPLE
p=3 is in the sequence because (3-1)^3/8+(3+1)/2=3 is prime.
p=5 is in the sequence because (5-1)^3/8+(5+1)/2=11 is prime.
MATHEMATICA
f[n_]:=((n-1)/2)^3+((n+1)/2); lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 6!}]; lst
Select[Prime[Range[180]], PrimeQ[(#-1)^3/8+(#+1)/2]&] (* Harvey P. Dale, Jan 05 2011 *)
PROG
(Magma) [p: p in PrimesUpTo(1000) | IsPrime((p^3-3*p^2+7*p+3) div 8)]; // Vincenzo Librandi, Apr 10 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition rewritten by R. J. Mathar, Aug 17 2009
STATUS
approved