

A163074


Swinging primes: primes which are within 1 of a swinging factorial (A056040).


4



2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011, 48619, 51479, 51481, 2704157, 155117519, 280816201, 4808643121, 35345263801, 81676217699, 1378465288199, 2104098963721, 5651707681619, 94684453367401
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Union of A163075 and A163076.


REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008.


LINKS

Table of n, a(n) for n=1..26.
Peter Luschny, Swinging Primes.


EXAMPLE

3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.)


MAPLE

# Seq with arguments <= n:
a := proc(n) select(isprime, map(x > A056040(x)+1, [$1..n]));
select(isprime, map(x > A056040(x)1, [$1..n]));
sort(convert(convert(%%, set) union convert(%, set), list)) end:


MATHEMATICA

Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f  1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* JeanFrançois Alcover, Jun 28 2013 *)


CROSSREFS

Cf. A088054, A163075, A163076.
Sequence in context: A244529 A025019 A140327 * A230041 A068803 A184902
Adjacent sequences: A163071 A163072 A163073 * A163075 A163076 A163077


KEYWORD

nonn


AUTHOR

Peter Luschny, Jul 21 2009


STATUS

approved



