This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040). 4
 2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011, 48619, 51479, 51481, 2704157, 155117519, 280816201, 4808643121, 35345263801, 81676217699, 1378465288199, 2104098963721, 5651707681619, 94684453367401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Union of A163075 and A163076. REFERENCES Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008. LINKS Peter Luschny, Swinging Primes. EXAMPLE 3\$ + 1 = 7 is prime, so 7 is in the sequence. (Here '\$' denotes the swinging factorial function.) MAPLE # Seq with arguments <= n: a := proc(n) select(isprime, map(x -> A056040(x)+1, [\$1..n])); select(isprime, map(x -> A056040(x)-1, [\$1..n])); sort(convert(convert(%%, set) union convert(%, set), list)) end: MATHEMATICA Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *) CROSSREFS Cf. A088054, A163075, A163076. Sequence in context: A244529 A025019 A140327 * A230041 A068803 A184902 Adjacent sequences:  A163071 A163072 A163073 * A163075 A163076 A163077 KEYWORD nonn AUTHOR Peter Luschny, Jul 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 22:32 EDT 2018. Contains 313817 sequences. (Running on oeis4.)