

A163075


Primes of the form n$ + 1. Here '$' denotes the swinging factorial function (A056040).


4



2, 3, 7, 31, 71, 631, 3433, 51481, 2704157, 280816201, 4808643121, 35345263801, 2104098963721, 94684453367401, 1580132580471901, 483701705079089804581
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008.


LINKS

Table of n, a(n) for n=1..16.
Peter Luschny, Swinging Primes.


EXAMPLE

Since 3$ = 4$ = 6 the prime 7 is listed, however only once.


MAPLE

a := proc(n) select(isprime, map(x > A056040(x)+1, [$1..n])) end:


MATHEMATICA

Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* JeanFrançois Alcover, Jun 28 2013 *)


CROSSREFS

Cf. A163077 (arguments n), A163074, A163076, A088332.
Sequence in context: A008840 A268477 A156313 * A265113 A228171 A089359
Adjacent sequences: A163072 A163073 A163074 * A163076 A163077 A163078


KEYWORD

nonn


AUTHOR

Peter Luschny, Jul 21 2009


STATUS

approved



