

A025019


Smallest prime in Goldbach partition of A025018(n).


9



2, 3, 5, 7, 19, 23, 31, 47, 73, 103, 139, 173, 211, 233, 293, 313, 331, 359, 383, 389, 523, 601, 727, 751, 829, 929, 997, 1039, 1093, 1163, 1321, 1427, 1583, 1789, 1861, 1877, 1879, 2029, 2089, 2803, 3061, 3163, 3457, 3463, 3529, 3613, 3769, 3917, 4003, 4027, 4057
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Increasing subsequence of A020481.


LINKS

N. J. A. Sloane, Table of n, a(n) for n=1..67 (from the web page of Tomas Oliveira e Silva)
Mark A. Herkommer, Goldbach Conjecture Research
Tomas Oliveira e Silva, Goldbach conjecture verification
Jörg Richstein, Verifying the Goldbach conjecture up to 4 * 10^14, Math. Comp., 70 (2001), 17451749.
Index entries for sequences related to Goldbach conjecture


EXAMPLE

1427 and 1583 are two consecutive terms because A020481(167535419) = 1427 and A020481(209955962) = 1583 and for 167535419 < n < 209955962 A020481(n) <= 1427.


MATHEMATICA

p = 1; q = {}; Do[ k = 2; While[ !PrimeQ[k]  !PrimeQ[2n  k], k++ ]; If[k > p, p = k; q = Append[q, p]], {n, 2, 10^8}]; q


CROSSREFS

Cf. A025018, A020481, A097224, A097226.
Sequence in context: A129693 A153590 A244529 * A140327 A163074 A230041
Adjacent sequences: A025016 A025017 A025018 * A025020 A025021 A025022


KEYWORD

nonn


AUTHOR

David W. Wilson, Dec 11 1999


EXTENSIONS

Edited and extended by Robert G. Wilson v, Dec 13 2002
More terms and bfile added by N. J. A. Sloane, Nov 28 2007


STATUS

approved



