login
A162732
G.f. is the polynomial (Product_{k=1..29} (1 - x^(3*k)))/(1-x)^29.
1
1, 29, 435, 4494, 35931, 236901, 1340408, 6688531, 30022569, 123054221, 465973276, 1645558368, 5461104956, 17140618084, 51153912696, 145821399597, 398621995827, 1048532319201, 2661833593149, 6538864924476, 15579750854262
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=29: seq(coeff(series(mul((1-x^(3*i)), i=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[29]))/(1-x)^29, {x, 0, 20}], x] (* Harvey P. Dale, May 30 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 29, (1-x^(3*k)))/(1-x)^29; Vec(A) \\ G. C. Greubel, Jul 07 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..29]])/(1-x)^29; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
CROSSREFS
Sequence in context: A161972 A162376 A188356 * A010981 A022593 A078115
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved