login
A022593
Expansion of Product_{m>=1} (1+q^m)^29.
2
1, 29, 435, 4524, 36801, 249980, 1476535, 7792619, 37464346, 166445529, 690898842, 2702690003, 10033022642, 35545708813, 120756549637, 394935306099, 1247670362782, 3818503661392, 11350088407317, 32837741707782, 92652254354675, 255382893501050, 688721602753864
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (29/3)^(1/4) * exp(Pi * sqrt(29*n/3)) / (65536 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^29, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^29)) \\ G. C. Greubel, Feb 19 2018
(PARI) q='q+O('q^99); Vec((eta(q^2)/eta(q))^29) \\ Altug Alkan, May 03 2018
(Magma) Coefficients(&*[(1+x^m)^29:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 19 2018
CROSSREFS
Column k=29 of A286335.
Sequence in context: A188356 A162732 A010981 * A078115 A125486 A282925
KEYWORD
nonn
STATUS
approved