This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162499 Triangle read by rows in which row n gives coefficients of the expansion of the polynomial Product( (1-x^(3*k))/(1-x), k=1..n). 31
 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 REFERENCES A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed. LINKS G. C. Greubel, Rows n=0..20 of triangle, flattened A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012. A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv:1302.6287 [physics.optics], 2013. EXAMPLE Triangle begins: 1 1, 1, 1 1, 2, 3, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1 1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895, 1049, 1200, 1342, 1469, 1575, 1655, 1705, 1722, 1705, 1655, 1575, 1469, 1342, 1200, 1049, 895, 744, 601, 470, 354, 255, 174, 111, 65, 34, 15, 5, 1, ... MATHEMATICA row[n_] := CoefficientList[Product[(1 - x^(3*k))/(1 - x), {k, 1, n}], x]; Table[row[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Sep 19 2016 *) CROSSREFS Rows give A162500, ... Sequence in context: A097032 A127661 A008968 * A135715 A089326 A237367 Adjacent sequences:  A162496 A162497 A162498 * A162500 A162501 A162502 KEYWORD nonn,tabf,look AUTHOR N. J. A. Sloane, Dec 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 08:17 EST 2018. Contains 317275 sequences. (Running on oeis4.)