login
A162727
G.f. is the polynomial (Product_{k=1..28} (1 - x^(3*k)))/(1-x)^28.
1
1, 28, 406, 4059, 31437, 200970, 1103507, 5348123, 23334038, 93031652, 342919055, 1179585092, 3815546588, 11679513128, 34013294612, 94667486901, 252800596230, 649910323374, 1613301273948, 3877031331327, 9040885929786, 20499683451541
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=28: seq(coeff(series(mul((1-x^(3*i)), i=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[28]))/(1-x)^28, {x, 0, 50}], x] (* G. C. Greubel, Jul 07 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 28, (1-x^(3*k)))/(1-x)^28; Vec(A) \\ G. C. Greubel, Jul 07 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..28]])/(1-x)^28; Coefficients(R!(F)); // G. C. Greubel, Jul 07 2018
CROSSREFS
Sequence in context: A161571 A161956 A162370 * A010980 A022592 A323973
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved