This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162728 G.f.: x/(1-x) = Sum_{n>=1} a(n)*log(1+x^n)/n. 3
 1, 3, 2, 8, 4, 6, 6, 20, 6, 12, 10, 16, 12, 18, 8, 48, 16, 18, 18, 32, 12, 30, 22, 40, 20, 36, 18, 48, 28, 24, 30, 112, 20, 48, 24, 48, 36, 54, 24, 80, 40, 36, 42, 80, 24, 66, 46, 96, 42, 60, 32, 96, 52, 54, 40, 120, 36, 84, 58, 64, 60, 90, 36, 256, 48, 60, 66, 128, 44, 72, 70 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dirichlet inverse of A117212. [R. J. Mathar, Jul 15 2010] LINKS Paul D. Hanna, Table of n, a(n) for n = 1..10000 FORMULA a(2n-1) = phi(2n-1); a(2n) = phi(2n)*A090739(n), where A090739(n) = exponent of 2 in 3^(2n)-1. Inverse Mobius transform of A091512, where A091512(n) = exponent of 2 in (2n)^n. Multiplicative: a(m,n) = a(m)*a(n) when gcd(m,n)=1, with a(p) = p-1 for odd prime p and a(2)=3. G.f.: x/(1-x)^2 = Sum_{n>=1} a(n)*x^n/(1+x^n). [Paul D. Hanna, Jul 12 2009] Dirichlet g.f. zeta(s-1)/( zeta(s)*(1-2^(1-s)) ). - R. J. Mathar, Apr 14 2011 a((2*n-1)*2^p) = (p+2)*2^(p-1)* phi(2*n-1), p >= 0. Observe that a(2^p) = A001792(p). - Johannes W. Meijer, Jan 26 2013 EXAMPLE x/(1-x) = log(1+x) + 3*log(1+x^2)/2 + 2*log(1+x^3)/3 + 8*log(1+x^4)/4 + 4*log(1+x^5)/5 + 6*log(1+x^6)/6 + 6*log(1+x^7)/7 + 20*log(1+x^8)/8 +... MAPLE nmax:=71: with(numtheory): for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+2)*2^(p-1)*phi(2*n-1) od: od: seq(a(n), n=1..nmax); # [Johannes W. Meijer, Jan 26 2013] PROG (PARI) /* As the inverse Mobius transform of A091512: */ {a(n)=sumdiv(n, d, moebius(n/d)*valuation((2*d)^d, 2))} (PARI) /* From a(2n-1)=phi(2n-1); a(2n)=phi(2n)*A090739(n), we get: */ {a(n)=if(n%2==1, eulerphi(n), eulerphi(n)*valuation(3^n-1, 2))} (PARI) /* From x/(1-x) = Sum_{n>=1} a(n)*log(1+x^n)/n, we get: */ {a(n)=local(A=[1]); for(k=1, n, A=concat(A, 0); A[ #A]=#A*(1-polcoeff(sum(m=1, #A, A[m]/m*log(1+x^m +x*O(x^#A)) ), #A))); A[n]} CROSSREFS Cf. A090739, A091512, A000010 (Euler phi), A220466. Sequence in context: A191731 A143515 A082333 * A127300 A129199 A211164 Adjacent sequences:  A162725 A162726 A162727 * A162729 A162730 A162731 KEYWORD mult,nonn AUTHOR Paul D. Hanna, Jul 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .