login
A161437
Number of reduced words of length n in the Weyl group A_5.
1
1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Computed with MAGMA using commands similar to those used to compute A161409.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
FORMULA
G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.
MATHEMATICA
CoefficientList[Series[(1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) / (1 - x)^5, {x, 0, 120}], x] (* Vincenzo Librandi, Aug 23 2016 *)
CROSSREFS
Sequence in context: A244100 A031333 A303706 * A301681 A047801 A005918
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Nov 30 2009
STATUS
approved