

A161438


Number of reduced words of length n in the Weyl group A_6.


0



1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Computed with MAGMA using commands similar to those used to compute A161409.


REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)


LINKS

Table of n, a(n) for n=0..89.


FORMULA

G.f. for A_m is the polynomial Prod_{k=1..m}(1x^(k+1))/(1x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.


CROSSREFS

Sequence in context: A055455 A203552 A050768 * A063488 A299292 A162209
Adjacent sequences: A161435 A161436 A161437 * A161439 A161440 A161441


KEYWORD

nonn


AUTHOR

John Cannon and N. J. A. Sloane, Nov 30 2009


STATUS

approved



