|
|
A160057
|
|
Decimal expansion of (8979+2990*sqrt(2))/89^2.
|
|
4
|
|
|
1, 6, 6, 7, 4, 0, 2, 9, 2, 2, 7, 9, 9, 5, 9, 0, 2, 2, 7, 9, 9, 1, 0, 4, 2, 7, 0, 7, 4, 0, 9, 0, 3, 8, 9, 1, 6, 1, 6, 2, 5, 1, 9, 7, 4, 5, 9, 1, 3, 0, 2, 5, 4, 6, 8, 8, 5, 4, 7, 2, 4, 4, 5, 6, 0, 7, 7, 8, 0, 4, 5, 8, 4, 0, 9, 3, 1, 3, 2, 1, 8, 6, 1, 0, 8, 1, 5, 0, 3, 2, 5, 4, 1, 8, 4, 6, 3, 3, 6, 3, 5, 2, 4, 5, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A129298.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160055.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Equals (130+23*sqrt(2))/(130-23*sqrt(2)).
Equals (3+2*sqrt(2))*(14- 3*sqrt(2) )^2/(14+3*sqrt(2))^2.
|
|
EXAMPLE
|
(8979+2990*sqrt(2))/89^2 = 1.66740292279959022799...
|
|
MATHEMATICA
|
RealDigits[(8979+2990*Sqrt[2])/89^2, 10, 100][[1]] (* G. C. Greubel, Apr 15 2018 *)
|
|
PROG
|
(PARI) (8979+2990*sqrt(2))/89^2 \\ G. C. Greubel, Apr 15 2018
(MAGMA) (8979+2990*Sqrt(2))/89^2; // G. C. Greubel, Apr 15 2018
|
|
CROSSREFS
|
Cf. A129298, A160055, A002193 (decimal expansion of sqrt(2)), A160056 (decimal expansion of (107+42*sqrt(2))/89).
Sequence in context: A244293 A196737 A070058 * A190145 A195103 A152485
Adjacent sequences: A160054 A160055 A160056 * A160058 A160059 A160060
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Klaus Brockhaus, May 04 2009
|
|
STATUS
|
approved
|
|
|
|