login
A129298
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+89)^2 = y^2.
10
0, 51, 120, 267, 540, 931, 1780, 3367, 5644, 10591, 19840, 33111, 61944, 115851, 193200, 361251, 675444, 1126267, 2105740, 3936991, 6564580, 12273367, 22946680, 38261391, 71534640, 133743267, 223003944, 416934651, 779513100, 1299762451
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+89, y).
Corresponding values y of solutions (x, y) are in A160055.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (107+42*sqrt(2))/89 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 178 with for n > 6; a(1)=0, a(2)=51, a(3)=120, a(4)=267, a(5)=540, a(6)=931.
G.f.: x*(51+69*x+147*x^2-33*x^3-23*x^4-33*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 89*A001652(k), k >= 0. (Zak Seidov, May 28, 2007)
a(1)=0, a(2)=51, a(3)=120, a(4)=267, a(5)=540, a(6)=931, a(7)=1780, a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - a(n-6) + a(n-7). - Harvey P. Dale, Sep 21 2013
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 51, 120, 267, 540, 931, 1780}, 30] (* Harvey P. Dale, Sep 21 2013 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921), print1(n, ", ")))};
(PARI) x='x+O('x^30); concat(0, Vec(x*(51+69*x+147*x^2-33*x^3-23*x^4-33*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, Apr 19 2018
(Magma) I:=[0, 51, 120, 267, 540, 931, 1780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 19 2018
CROSSREFS
Cf. A160055, A129289, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A160056 (decimal expansion of (107+42*sqrt(2))/89), A160057 (decimal expansion of (8979+2990*sqrt(2))/89^2).
Sequence in context: A031894 A068564 A063314 * A065010 A365834 A097644
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 26 2007
EXTENSIONS
Edited and three terms added by Klaus Brockhaus, May 04 2009
STATUS
approved