login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160050
Numerator of the Harary number for the star graph s_n.
12
0, 1, 5, 9, 7, 10, 27, 35, 22, 27, 65, 77, 45, 52, 119, 135, 76, 85, 189, 209, 115, 126, 275, 299, 162, 175, 377, 405, 217, 232, 495, 527, 280, 297, 629, 665, 351, 370, 779, 819, 430, 451, 945, 989, 517, 540, 1127, 1175, 612, 637, 1325, 1377, 715, 742, 1539
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Harary Index.
FORMULA
Numerator of (1/4)*(n+2)*(n-1). - Joerg Arndt, Jan 04 2011
It appears that a(n + 1) = A060819(n-1) * A060819(n + 2). - Paul Curtz, Dec 23 2010 [Corrected by Joerg Arndt, Jan 04 2011]
G.f.: x^2*(-1-2*x-5*x^4+3*x^5-2*x^6+x^7) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Jan 04 2011
a(1+4*n) = (A000217(n+1)-1)/2, a(2+4*n) = (A000217(n+2)-1)/2, a(3+4*n) = A000217(n+3)-1, a(4+4*n) = A000217(n+4)-1. - Paul Curtz, Dec 23 2010.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). This is not the shortest recurrence. -Paul Curtz, Mar 27 2011
a(1+3*n) = numerator of 9*n*(n+1)/4 = 9*A064038(1+n). - Paul Curtz, Apr 06 2011
a(n) = (n-1)*(n+2)*(3-i^((n-2)*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Apr 07 2011, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 13/9 + Pi/6. - Amiram Eldar, Aug 09 2022
EXAMPLE
0, 1, 5/2, 9/2, 7, 10, 27/2, 35/2, 22, 27, ...
MATHEMATICA
f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 3] &, 58]
Rest[CoefficientList[Series[x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3), {x, 0, 50}], x]] (* G. C. Greubel, Sep 21 2018 *)
PROG
(PARI) s=vector(40, n, 1/4*(n+2)*(n-1)) /* fractions */
vector(#s, n, numerator(s[n])) /* this sequence */ \\ Joerg Arndt, Jan 04 2011
(PARI) x='x+O('x^50); concat([0], Vec(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))) \\ G. C. Greubel, Sep 21 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))); // G. C. Greubel, Sep 21 2018
CROSSREFS
Cf. A130658 (denominators), A033954 (quadrisection), A001107 (quadrisection), A181890 (quadrisection).
Sequence in context: A077125 A233831 A232190 * A055566 A255247 A366841
KEYWORD
nonn,easy,frac
AUTHOR
Eric W. Weisstein, Apr 30 2009
EXTENSIONS
Edited by N. J. A. Sloane, Dec 23 2010
STATUS
approved