login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160035 Clausen-normalized numerators of the Bernoulli numbers of order 2. 0
1, 0, -1, 0, 3, 0, -5, 0, 7, 0, -45, 0, 7601, 0, -91, 0, 54255, 0, -745739, 0, 3317609, 0, -17944773, 0, 5436374093, 0, -213827575, 0, 641235447783, 0, -249859397004145, 0, 238988952277727 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Let B_n{^(k)}(x) denote the Bernoulli polynomials of order k, defined by the generating function

(t/(exp(t)-1))^k*exp(x*t) = Sum_{n>=0} B_n{^(k)}(x) t^n/n!

Bernoulli numbers of order 1 (defined as B_n{^(1)}(1)) can be regarded as a pair of sequences B1_n = N1_n / D1_n with

N1_n = A027641, D1_n = A141056 (Clausen).

Similarly Bernoulli numbers of order 2 (defined as B_n{^(2)}(1)) can be regarded as a pair of sequences B2_n = N2_n / D2_n with

N2_n = this sequence, D2_n = A141056 (Clausen).

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, Boston, Mass., 1974.

C. Jordan, Calculus of Finite Differences, New York, Chelsea, 1965.

N. E. Nørlund, Vorlesungen über Differenzenrechnung, Berlin, Springer-Verlag, 1924.

LINKS

Table of n, a(n) for n=0..32.

EXAMPLE

The Clausen-normalized Bernoulli polynomials of order 2 are:

1

2 x - 2

6 x^2 - 12 x + 5

2 x^3 - 6 x^2 + 5 x - 1

30 x^4 - 120 x^3 + 150 x^2 - 60 x + 3

2 x^5 - 10 x^4 + 50/3 x^3 - 10 x^2 + x + 1/3

42 x^6 - 252 x^5 + 525 x^4 - 420 x^3 + 63 x^2 + 42 x - 5

The value of these polynomials at x = 1 gives the sequence.

MAPLE

a := proc(n) local g, c, i; g := k -> (t/(exp(t)-1))^k*exp(x*t): c := proc(n) local i; mul(i, i=select(isprime, map(i->i+1, numtheory[divisors](n)))) end: convert(series(g(2), t, n+8), polynom): seq(i!*c(i)*subs(x=1, coeff(%, t, i)), i=0..n) end:

CROSSREFS

Cf. A120282, A132094, A100615 and A027643.

Sequence in context: A210524 A049283 A141162 * A281648 A210451 A239233

Adjacent sequences:  A160032 A160033 A160034 * A160036 A160037 A160038

KEYWORD

sign

AUTHOR

Peter Luschny, Apr 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 13:03 EDT 2017. Contains 288825 sequences.