This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027643 Numerators of poly-Bernoulli numbers B_n^(k) with k=2. 6
 1, 1, -1, -1, 7, 1, -38, -5, 11, 7, -3263, -15, 13399637, 7601, -8364, -91, 1437423473, 3617, -177451280177, -745739, 166416763419, 3317609, -17730427802974, -5981591, 51257173898346323, 5436374093, -107154672791057, -213827575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..521 K. Imatomi, M. Kaneko, E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5 M. Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. FORMULA a(n) = numerator of Sum_{k=0..n} W(n,k)*h(k+1) with W(n,k) = (-1)^(n-k)*k!* Stirling2(n+1,k+1) the Worpitzky numbers and h(n) = Sum_{k=1..n} 1/k^2 the generalized harmonic numbers of order 2. - Peter Luschny, Sep 28 2017 MAPLE a := n -> numer((-1)^n*add( (-1)^m*m!*Stirling2(n, m)/(m+1)^2, m=0..n)): seq(a(n), n=0..27); MATHEMATICA k = 2; Table[Numerator[(-1)^n Sum[(-1)^m m! StirlingS2[n, m]/(m + 1)^k, {m, 0, n}]], {n, 0, 27}] (* Michael De Vlieger, Oct 28 2015 *) CROSSREFS Cf. A027644. Sequence in context: A147482 A171770 A050402 * A225122 A051931 A188728 Adjacent sequences:  A027640 A027641 A027642 * A027644 A027645 A027646 KEYWORD sign,frac,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 02:20 EST 2018. Contains 299297 sequences. (Running on oeis4.)