login
A160036
Let p(n) denote the n-th digit of Pi, and let e(n) denote the n-th digit of e. Then define a(n) = abs(p(n)*e(n+1) - p(n+1)*e(n)).
1
19, 27, 31, 38, 22, 7, 10, 28, 34, 28, 7, 27, 63, 28, 33, 4, 0, 9, 4, 6, 12, 4, 40, 4, 9, 11, 13, 7, 11, 31, 44, 30, 12, 8, 40, 20, 21, 58, 28, 7, 8, 6, 21, 27, 54, 45, 15, 18, 36, 5, 25, 47, 46, 8, 36, 9, 18, 18, 18, 4, 11, 44, 59, 7, 6, 14, 32, 56, 36, 12, 12, 18, 18, 14, 6, 24, 8, 32
OFFSET
1,1
COMMENTS
Absolute values of determinants taken on corresponding pairs of digits of Pi and e.
LINKS
EXAMPLE
a(1) = abs(3*7 - 1*2) = 19 (i.e., the determinant taken on the first pair of digits of Pi and e).
a(2) = abs(1*1 - 7*4) = 27.
a(3) = abs(4*8 - 1*1) = 31.
MATHEMATICA
Module[{nn=80, p, ee}, p=RealDigits[Pi, 10, nn][[1]]; ee=RealDigits[ E, 10, nn][[1]]; Table[Abs[p[[n]]ee[[n+1]]-p[[n+1]]ee[[n]]], {n, nn-1}]] (* Harvey P. Dale, Aug 02 2016 *)
CROSSREFS
Cf. A001113, Decimal expansion of e, and A000796, Decimal expansion of Pi.
Sequence in context: A043945 A274685 A152013 * A032701 A226726 A006626
KEYWORD
nonn,base
AUTHOR
Don Love (moptop35(AT)hotmail.com), Apr 30 2009
STATUS
approved