login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159833 a(n) = n^2*(n^2 + 15)/4. 2
0, 4, 19, 54, 124, 250, 459, 784, 1264, 1944, 2875, 4114, 5724, 7774, 10339, 13500, 17344, 21964, 27459, 33934, 41500, 50274, 60379, 71944, 85104, 100000, 116779, 135594, 156604, 179974, 205875, 234484, 265984, 300564, 338419, 379750, 424764 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = A008488(n+1)-2 = 4 - 15*A000292(n+1) + 6*A000332(n+4) + 20*A000217(n+1) - 15*(n+1).

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

G.f.: -x*(1+x)*(4*x^2-5*x+4)/(x-1)^5.

E.g.f.: x*(16 +22*x +6*x^2 +x^3)*exp(x)/4. - G. C. Greubel, May 19 2018

MAPLE

seq(n^2*(n^2+15)/4, n=0..80)

MATHEMATICA

CoefficientList[Series[-x*(1 + x)*(4*x^2 - 5*x + 4)/(x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 19, 54, 124}, 40] (* Harvey P. Dale, May 30 2016 *)

PROG

(MAGMA) [n^2 * (n^2 + 15)/4: n in [0..40]]; // Vincenzo Librandi, Dec 18 2012

(PARI) for(n=0, 30, print1(n^2*(n^2 +15)/4, ", ")) \\ G. C. Greubel, May 19 2018

CROSSREFS

Cf. A008488, A000292, A000332, A000217.

Sequence in context: A138617 A304993 A171354 * A166808 A253008 A186310

Adjacent sequences:  A159830 A159831 A159832 * A159834 A159835 A159836

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Apr 23 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 00:11 EST 2018. Contains 317252 sequences. (Running on oeis4.)