login
A159832
Numerator of Hermite(n, 13/22).
1
1, 13, -73, -7241, -41135, 6474533, 133942279, -7659772289, -326475260383, 10585140766525, 848669947078999, -14583331342963513, -2448742706582821007, 10516339034389368661, 7840456962356616680615, 66296583862124835824527, -27599003183146895684913599
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 13/22).
E.g.f.: exp(13*x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 13/11, -73/121, -7241/1331, -41135/14641, ...
MATHEMATICA
Numerator/@Table[HermiteH[n, 13/22], {n, 0, 20}] (* Harvey P. Dale, Apr 16 2011 *)
Table[11^n*HermiteH[n, 13/22], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 13/22)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(13/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
CROSSREFS
Cf. A001020 (denominators).
Sequence in context: A220414 A139157 A228027 * A139070 A094421 A301882
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved