login
A158479
a(n) = 36*n^2 + 6.
2
42, 150, 330, 582, 906, 1302, 1770, 2310, 2922, 3606, 4362, 5190, 6090, 7062, 8106, 9222, 10410, 11670, 13002, 14406, 15882, 17430, 19050, 20742, 22506, 24342, 26250, 28230, 30282, 32406, 34602, 36870, 39210, 41622, 44106, 46662, 49290, 51990, 54762, 57606, 60522
OFFSET
1,1
COMMENTS
The identity (12*n^2+1)^2 - (36*n^2+6)*(2*n)^2 = 1 can be written as A158480(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 6*x*(7+4*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(6))*Pi/sqrt(6) - 1)/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(6))*Pi/sqrt(6))/12. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {42, 150, 330}, 40]
PROG
(Magma) I:=[42, 150, 330]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
(PARI) a(n)=36*n^2+6 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A230932 A224954 A299131 * A188126 A189500 A350579
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 20 2009
STATUS
approved