login
A158481
a(n) = 49*n^2 + 7.
2
56, 203, 448, 791, 1232, 1771, 2408, 3143, 3976, 4907, 5936, 7063, 8288, 9611, 11032, 12551, 14168, 15883, 17696, 19607, 21616, 23723, 25928, 28231, 30632, 33131, 35728, 38423, 41216, 44107, 47096, 50183, 53368, 56651, 60032, 63511, 67088, 70763, 74536, 78407
OFFSET
1,1
COMMENTS
The identity (14*n^2+1)^2 - (49*n^2+7)*(2*n)^2 = 1 can be written as A158482(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 7*x*(8+5*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(7))*Pi/sqrt(7) - 1)/14.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(7))*Pi/sqrt(7))/14. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {56, 203, 448}, 40]
PROG
(Magma) I:=[56, 203, 448]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
(PARI) a(n)=49*n^2+7.
CROSSREFS
Sequence in context: A200833 A241611 A179403 * A325306 A376669 A193428
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 20 2009
STATUS
approved