OFFSET
1,1
COMMENTS
The identity (900*n - 1)^2 - (900*n^2 - 2*n)*30^2=1 can be written as a(n)^2 - A158408(n)*30^2 = 1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(30^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2); a(1)=899, a(2)=1799. - Harvey P. Dale, Dec 08 2011
G.f.: x*(899+x)/(x-1)^2. - Bruno Berselli, Dec 08 2011
MATHEMATICA
900*Range[40]-1 (* or *) LinearRecurrence[{2, -1}, {899, 1799}, 40] (* Harvey P. Dale, Dec 08 2011 *)
PROG
(Magma) I:=[899, 1799]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 12 2012
(PARI) for(n=1, 50, print1(900*n - 1", ")); \\ Vincenzo Librandi, Feb 12 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved