OFFSET
1,1
COMMENTS
The identity (900*n + 1)^2 - (900*n^2 + 2*n)*30^2 = 1 can be written as A158407(n)^2 - a(n)*30^2 = 1. - Vincenzo Librandi, Feb 09 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(-902 - 898*x)/(x-1)^3. - Vincenzo Librandi, Feb 09 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 09 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {902, 3604, 8106}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
PROG
(Magma) I:=[902, 3604, 8106]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 09 2012
(PARI) for(n=1, 40, print1(900*n^2 + 2*n", ")); \\ Vincenzo Librandi, Feb 09 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved