login
A158264
Table where row n lists the coefficients in the (2^n)-th iteration of x+x^2 for n>=0, read by antidiagonals not including trailing zeros in rows.
4
1, 1, 1, 1, 2, 1, 4, 2, 1, 8, 12, 1, 1, 16, 56, 30, 1, 32, 240, 364, 64, 1, 64, 992, 3480, 2240, 118, 1, 128, 4032, 30256, 49280, 13188, 188, 1, 256, 16256, 252000, 912640, 685160, 74760, 258, 1, 512, 65280, 2056384, 15665664, 27297360, 9383248, 409836, 302, 1
OFFSET
0,5
FORMULA
G.f. of column k: P_k(x)/Product_{j=1,k} (1-2^j*x) where P_k(x) is a polynomial of degree k-1 for k>=1.
EXAMPLE
Table of coefficients in the (2^n)-th iteration of x+x^2 begins:
1,1,0,0,0,0,0,0,0,0,0,0,0,0,...;
1,2,2,1,0,0,0,0,0,0,0,0,0,0,...;
1,4,12,30,64,118,188,258,302,298,244,162,84,32,8,1,0,0,0,0,0,...;
1,8,56,364,2240,13188,74760,409836,2179556,11271436,56788112,...;
1,16,240,3480,49280,685160,9383248,126855288,1695695976,...;
1,32,992,30256,912640,27297360,810903456,23950328688,...;
1,64,4032,252000,15665664,969917088,59855127360,3683654668512,...;
1,128,16256,2056384,259445760,32668147008,4106848523904,...;
1,256,65280,16613760,4222658560,1072200161920,272033712041216,...;
1,512,261632,133563136,68139438080,34745409189120,17710292513905152,...;
...
The initial column g.f.s are as follows:
k=1: 1/(1-2x);
k=2: 2x/((1-2x)(1-4x));
k=3: (x+16x^2)/((1-2x)(1-4x)(1-8x));
k=4: (64x^2+320x^3)/((1-2x)(1-4x)(1-8x)(1-16x));
k=5: (118x^2+5872x^3+13824x^4)/((1-2x)(1-4x)(1-8x)(1-16x)(1-32x));
...
The coefficients in the numerators of column g.f.s forms a triangle:
1;
0,2;
0,1,16;
0,0,64,320;
0,0,118,5872,13824;
0,0,188,51072,942592,1179648;
0,0,258,344304,28261632,278323200,179306496;
0,0,302,2025536,610203136,25398255616,152690491392,37044092928; ...
in which the main diagonal starts:
[1,2,16,320,13824,1179648,179306496,37044092928,-9947144257536,...];
and the row sums of the triangle begin:
[1,2,17,384,19814,2173500,486235890,215745068910,186016597075722,...].
PROG
(PARI) {T(n, k)=local(G=x+x^2+x*O(x^k)); if(n<1, 0, for(i=1, n-1, G=subst(G, x, G)); polcoeff(G, k, x))}
CROSSREFS
Cf. diagonals: A158260, A158261, A158262, A158263.
Cf. related table: A122888.
Sequence in context: A060637 A123486 A350161 * A274106 A354802 A158982
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 16 2009
STATUS
approved